
Reinforcement Learning for Dynamical Systems
Cesar Santoyo, Angel Yam, Jeremiah Coholich, and Pratik Kunapuli

1. Project Summary

In this project, we survey a variety of reinforcement learning (RL) techniques and study them
in the context of dynamical systems; specifically, we address the cart-pole problem. In general,
RL algorithms achieve their goal by observing a system’s state and executing an action based on
the expected reward given by the environment. We perform a review of RL literature highlighting
existing approaches. For brevity, we limit our survey to literature relevant to dynamical systems.
Furthermore, we implement a series of RL algorithms using the OpenAI’s Gym [1] and Pytorch
[2]. Specifically, we implement 1) a basic algorithm countering pole motion, 2) policy gradient
utilizing a two-layer neural network, 3) deep Q-learning backed by a three-layer neural network,
and 4) model predictive control (MPC). To conclude, we compare the individual performance of
the the RL techniques against the results of the MPC.

2. Introduction & Motivation

RL is a subset of machine learning concerned with how agents act within an environment in
order to maximize a defined reward function [3]. The representation of agents within their environ-
ment is formalized by a Markov Decision Process (MDP) which incorporates sensation, action, and
an ultimate goal. RL is neither exclusively supervised learning or unsupervised learning [4, 5, 6].
RL is distinct from supervised learning because it cannot rely solely on labeled data – an RL agent
must be able to learn through its own interaction with the environment. [7]. Unlike unsupervised
learning, an RL algorithm expects a reward signal which is intentionally crafted to produce desired
behavior, rather than trying to find structure in data or the environment. RL is of interest because in
many practical applications such as robotics and other dynamical systems [8, 9, 10, 11], computer
cluster resource management [12, 13], traffic light control [14, 15], and news recommendations
[16], agents utilize sensor data to improve their decision making. This motivates the project to
further study the most effective techniques for dynamical systems.

3. Preliminaries

RL problems are formalized by an MDP, in which an agent chooses actions based on its current
state within its environment in order to maximize a reward function. This is illustrated in Figure 1.

Definition 1 ([17]). An MDP is a 5-tuple (S , A , Ta, Ra, γ) which follows the Markov property
where S is the set of states, A is the set of actions, Ta (s,s′) : S ×A 7→ [0,1] is a transition
function mapping and current state action pairs to the next state, Rat is a reward function given for
a particular state, action, and next state tuple, and γ is a reward discount factor whose value is in
the interval [0, 1].

An agent at time t chooses an action at ∈A from a distribution conditioned off of its current
state, st ∈ S . The agent’s action selection is called a policy whose mapping is represented as
π : A ×S → [0,1] where π(a,s) = P(at = a | st = s). An agent achieves a total reward R =

∑
∞
t=0 γ tRat (st ,st+1) throughout its action period, which is finite in many RL problems.

The cart-pole is a common dynamical system seen in controls literature [18], which consists
of a block sliding along a 1-D rail with an unactuated pole atop the cart illustrated in Figure 2.
The cart-pole system is defined by the four state variables x = [x, ẋ,θ , θ̇]T , which are the position,
velocity, pole angle, and pole velocity. The goal is to exert forces on the block to stabilize the pole
in the upright position. The ’CartPole-v1’ implementation in Open AI only allows two possible
actions – an impulsive force of fixed magnitude in either direction. Each episode begins with initial
states each sampled from the uniform distribution [−0.05,0.05] and terminates if the pole angle
magnitude dips below π

15 rad., the cart reaches the edge of the display, or if the agent survives 500
timesteps. A reward of +1 is given for every action.

Figure 1: Diagram of a MDP in the
agent-environment interaction [3]

Figure 2: Open AI Gym cart-pole sys-
tem [1]

3.1. Policy Gradient (PG)

Policy gradient (PG) is one of the basic methods with which to perform reinforcement learn-
ing. Here, we limit the RL problem of interest to a finite-time horizon. Setting πθ (a,s) := π (a,s),
we can expand to obtain θ ∗ = argmax Eτ∼pθ (τ)

[
∑

T
t=1 Rat (st ,st+1)

]
. Setting the function J (θ) =

Eτ∼pθ (τ)

[
∑

T
t=1 Rat (st ,st+1)

]
≈ 1

N ∑
N
i=1 ∑

T
t=1 Rat

(
si
t ,s

i
t+1
)

where the mean is estimated through sam-
pling. Next, we can compute the gradient ∇J (θ). Using the property πθ (τ)∇θ logθ (τ)=∇θ πθ (τ)
and the definition of expectation, we arrive at

∇θ J(θ) =
1
N

N

∑
i=1

(
T

∑
t=1

∇θ logπθ

(
ai

t ,s
i
t
))(T

∑
t=1

Rat

(
si
t ,s

i
t+1
))

.

To find the parameter θ , we can use gradient descent or similar gradient methods.

3.2. Deep Q-Learning

Q-learning is another form of RL, where if there exists a function Q∗ : S ×A → R, then we
know the true reward for every state-action pair, and thus an optimal policy could be derived such
that π∗ = argmaxat Q∗(st ,at). The principle idea behind Deep Q-learning is that neural networks
are universal function approximators [19]; Q∗(st ,at) is unknown, it can be learned via a neural
network. The training update for the model are listed in the equations below. Let B represent a
batch of transitions in the form of the collection {st ,at ,st+1,Rat (st ,st+1)}.

The Q-value update rule Qπ(st ,at) = Rat + γ is according to the Bellman equation. Equations
δ = Q(st ,at)− (Rat + γ maxat Q(st+1,at)) and L = 1

|B|∑{st ,at ,st+1,Rat }∈B l(δ) show how the loss

function for the neural network is derived, and in particular equation L = 1
|B|∑{st ,at ,st+1,Rat }∈B l(δ)

shows how experience replay is used to sample previous transitions. Equation (1) shows the use of

the Huber loss, which is close to mean square error when δ is small, and close to mean absolute
error when δ is large.

l(δ) =

{
1
2δ 2 for |δ | ≤ 1,
|δ |− 1

2 otherwise
(1)

3.3. Model Predictive Control (MPC)

MPC requires knowledge of system dynamics to calculate control actions [20]. The algorithm
does not solve for a general policy, and thus there is no training phase and the optimization is
continuously run while the controller is in operation. MPC is not a machine learning method and
is included in this paper as a performance benchmark. In the the cart-pole, the system dynamics (2)
and (3) are derived directly from the laws of physics using the mass and length parameters found
in OpenAI Gym.

ẍ =
1

1+0.1sin2
θ

[
u+0.1sinθ

(
0.5θ̇

2 +9.8cosθ
)]

(2)

θ̈ =
1

0.5+0.05sin2
θ
[−ucosθ −0.05θ̇

2 cosθ sinθ −10.78sinθ] (3)

4. Methodology & Results

We opt to use the OpenAI Gym, which was created for implementing and developing RL
algorithms [1]. In the case of policy gradient and Deep Q-Learning, we also use Pytorch [2] to
construct the corresponding neural networks. The cart-pole is included in the standard Gym Python
package. The objective of each algorithm is to efficiently stabilize each system by maintaining the
pole upright within preset thresholds.

4.1. Cart-Pole Model Basic Algorithm

First, we formulate a simple, “naive” policy which chooses an action deterministically based
off of its observation of only the angular position of the pole. For example, if the pole is at a
positive angle, i.e, leaning rightward, the action would be to push the cart to the right such that
the cart can attempt to be directly below the center of mass of the pole. The algorithm serves as
a lower-bound of the performance we can expect to achieve, because all other agents will have
access to the full state of the system. The results from this implementation are presented in Figure
4, which depicts a histogram of the rewards as well as the mean reward of 42.22.

4.2. Cart-Pole Model Policy Gradient

We specifically compute the policy parameters θ using the neural network architecture in Fig-
ure 3. This architecture is composed of two linear layers as two activation functions. In general,
the first linear layer uses tanh(·) as the activation function. However, the output activation func-
tion was a design parameter. Figures 5 and 6 illustrates the reward over all the episodes and the
respective mean for the ReLu(·) function and the identity output activation function, respectively.

4.3. Cart-Pole Model Deep Q-Learning

The neural network used to learn the Q(st ,at) approximation was a three-layer neural network.
The inputs to the network were the four observations given by the environment, and the outputs

4

W1
k1×4

k1

W2
2×k1

2 2

x
4×1 k1×1

h1

k1×1

Inputs Linear Layer 1

h1 = tanh(W1x)

2×1

h2

2×1

Linear Layer 2

h2 = actout (W2h1)

Probabilities
2×1

Softmax

Figure 3: Illustration of Neural Network
used for Policy Gradient. Here, a state vec-
tor x, i.e., the full cart-pole state is passed
through the network and logit probabilities
are computed at the end using the softmax
function.

30 40 50 60 70
Reward

0

100

200

300

F
re

q
u

en
cy

Mean Reward: 42.22

Histogram of Rewards over 1000 episodes

Figure 4: A histogram of the rewards
for for 1000 episodes of the basic algo-
rithm.

0 100 200 300 400 500
Reward

0

100

200

300

400

500

F
re

q
u

en
cy

Mean Reward: 108.81

Histogram of Rewards over 1000 episodes

Figure 5: A histogram of the reward of
the policy gradient RL algorithm with the
ReLu(·) output activation function. Here,
we see that the mean reward is 108.81.

0 100 200 300 400 500
Reward

0

50

100

150

200

250

F
re

q
u

en
cy

Mean Reward: 141.91

Histogram of Rewards over 1000 episodes

Figure 6: A histogram of the reward of the
policy gradient RL algorithm with identity
output activation. Here, we see that the
mean reward is 141.91.

were the expected Q-value for taking a left and a right action (Q(st , left) and Q(st , right)). The
neural network layers had 50, 100, and 50 nodes respectively; each were passed through a 1D
batch normalization and then a ReLU activation function was used. Figure 7 presents the rewards
achieved over 1000 runs of the learned policy where the average reward achieved was 88.90.

4.4. Cart-Pole Model Predictive Control (MPC)

Many implementations of MPC employ trajectory optimization to find sequence of actions
that maximizes the rewards. However, the simplicity of the reward function means the trajectory
only needs to avoid episode termination (tipping the pole or moving the cart too far from center).
The small, discrete action space precludes the use of gradient methods to optimize the trajectory.
Instead, all possible feasible combinations of the two actions are generated for for the planning
horizon, which was chosen as 10. A trajectory is chosen based off of a cost function penalizing
deviations from state x = [0,0,0,0]. Since this is a simple simulation without external disturbances
and unmodeled dynamics, the state transitions occur deterministically and the MPC algorithm’s
predictions are exact. The algorithm achieved the maximum reward of 500 every time for 100
episodes. The state history for one such episode is depicted in Figure 8. Here, we see only small
deviations in pole angle which are well within the limits of the simulation.

20 40 60 80 100
Reward

0

100

200

300

400

500

600

F
re

qu
en

cy
Mean Reward: 88.90

Histogram of Rewards over 1000 episodes

Figure 7: A histogram of the reward of the Q-
learning RL algorithm. Here, we see that the
mean reward is 88.90.

0 10
time (s)

−0.5

0.0

0.5

x
-p

os
it

io
n

(m
)

0 10
time (s)

−1

0

1

ve
lo

ci
ty

(m
/s

)

0 10
time (s)

−0.1

0.0

0.1

an
gl

e
(r

ad
)

0 10
time (s)

−1

0

1

an
gl

e
(r

ad
/s

)

Figure 8: Results from stabilizing the cart-
pole system using MPC.

5. Discussion

The relative performance of each algorithm can be explained in terms of their fundamental
differences. Of the RL algorithms tested, the PG algorithm learned a policy which performed
the best. For PG, we tested two output activation function architectures, ReLu(·) and tanh(·),
where the average rewards are 108.81 and 141.91, respectively. ReLu performs worse than tanh(·),
which can be attributed to the fact the neurons can ”die” as a result of using ReLu [21]. DQN
averages 89.90 over 1000 episodes, making it perform below both PG architectures. Lastly, the
basic algorithm, which served as a baseline model comparison, achieves an average reward of 42.22
over 1000 episodes. The performance of PG over DQN can be attributed to the fact that the PG
algorithm is on-policy as opposed to DQN which is off-policy. This means that the PG algorithm
can learn and tweak the policy during the course of any episode of optimization since it is testing
and learning on the policy at the same time. This is not the case for the DQN, where the off-policy
nature means that for any single episode of optimization, only one update to the policy network
will be made. Furthermore, the optimizations used for DQN, such as experience replay and dual
function learning, perhaps hindered the ability of a complex network (three layers) to learn the
policy given a simple simulation such as cartpole. Finally, one fundamental difference between
the two algorithms that could serve to explain the differences in performance is that the DQN is
attempting to approximate the Q-value for either action in any state, while the PG is performing
parameter estimation and using the long-term expected reward to optimize. This difference in
objective functions of the algorithms could point to why the DQN learns a policy that performs
worse than the PG does, because the DQN may not have explored every state-action pair and
learned the proper action to take according to the estimated Q-value. This leads to the takeaway that
there exist trade-offs between the complexity of the learning algorithm and the problem itself,
i.e., sometimes more complex algorithms are not better. Overall, MPC is the most effective as it
does not need to cycle through a series of failures to ultimately reach the desired goal; however,
RL methods may be much better when dealing with either more complex or stochastic system
dynamics.

6. Conclusions

In this project, we performed a survey of reinforcement learning techniques and implemented
various methods relevant to dynamical systems. Here, we benchmark the results of RL algorithms
against the results of a classical controller. Among the RL methods, PG proved to be the most
effective with an identity output activation; however, MPC is better suited to address this problem
since the system dynamics are easily understood without needing trial-and-error learning. Future
work could involve testing these algorithms on more complex dynamical systems and implement-
ing them on real-world hardware.

References

[1] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba, “OpenAI gym,” 2016.
[2] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,

A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch:
An imperative style, high-performance deep learning library,” in Advances in Neural Information Processing Systems 32,
H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019, pp.
8024–8035. [Online]. Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-
learning-library.pdf

[3] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction. MIT press, 2018.
[4] M. Lapan, Deep Reinforcement Learning Hands-On: Apply modern RL methods, with deep Q-networks, value iteration,

policy gradients, TRPO, AlphaGo Zero and more. Packt Publishing Ltd, 2018.
[5] D. P. Bertsekas, Reinforcement learning and optimal control. Athena Scientific, 2019.
[6] L. Graesser and W. L. Keng, Foundations of Deep Reinforcement Learning: Theory and Practice in Python. Addison-Wesley

Professional, 2019.
[7] R. Sathya and A. Abraham, “Comparison of supervised and unsupervised learning algorithms for pattern classification,”

International Journal of Advanced Research in Artificial Intelligence, vol. 2, no. 2, pp. 34–38, 2013.
[8] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep visuomotor policies,” The Journal of Machine

Learning Research, vol. 17, no. 1, pp. 1334–1373, 2016.
[9] G. Williams, N. Wagener, B. Goldfain, P. Drews, J. M. Rehg, B. Boots, and E. A. Theodorou, “Information theoretic mpc for

model-based reinforcement learning,” in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 1714–1721.

[10] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,” The International Journal of Robotics
Research, vol. 32, no. 11, pp. 1238–1274, 2013.

[11] C. G. Atkeson and J. C. Santamaria, “A comparison of direct and model-based reinforcement learning,” in Proceedings of
International Conference on Robotics and Automation, vol. 4. IEEE, 1997, pp. 3557–3564.

[12] H. Mao, M. Alizadeh, I. Menache, and S. Kandula, “Resource management with deep reinforcement learning,” in Proceedings
of the 15th ACM Workshop on Hot Topics in Networks, 2016, pp. 50–56.

[13] C.-Z. Xu, J. Rao, and X. Bu, “Url: A unified reinforcement learning approach for autonomic cloud management,” Journal of
Parallel and Distributed Computing, vol. 72, no. 2, pp. 95–105, 2012.

[14] I. Arel, C. Liu, T. Urbanik, and A. G. Kohls, “Reinforcement learning-based multi-agent system for network traffic signal
control,” IET Intelligent Transport Systems, vol. 4, no. 2, pp. 128–135, 2010.

[15] L. Li, Y. Lv, and F.-Y. Wang, “Traffic signal timing via deep reinforcement learning,” IEEE/CAA Journal of Automatica
Sinica, vol. 3, no. 3, pp. 247–254, 2016.

[16] G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li, “Drn: A deep reinforcement learning framework for
news recommendation,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 167–176.

[17] C. C. White III and D. J. White, “Markov decision processes,” European Journal of Operational Research, vol. 39, no. 1, pp.
1–16, 1989.

[18] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive elements that can solve difficult learning control
problems,” IEEE transactions on systems, man, and cybernetics, no. 5, pp. 834–846, 1983.

[19] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath, “Deep reinforcement learning: A brief survey,” IEEE
Signal Processing Magazine, vol. 34, no. 6, pp. 26–38, 2017.

[20] E. F. Camacho and C. B. Alba, Model predictive control. Springer Science & Business Media, 2013.
[21] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions: Comparison of trends in practice and research

for deep learning,” arXiv preprint arXiv:1811.03378, 2018.

