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Abstract— In this paper, we consider an electric vehicle
charging facility that offers various levels of service, i.e.,
charging rates, for varying prices such that rational users
choose a level of service based on their value of time, also
called impatience. In particular, we characterize the sensitivity
of the expected number of users, i.e., occupancy, at the facility
to the probability distribution of users’ impatience. We first
provide an upper bound for the difference between the expected
occupancy under any two different distributions on users’ im-
patience. Next, we consider the case when the users’ impatience
are discrete random variables, and we study the sensitivity of
the expected occupancy to the probability masses and attained
values of the random variables. We show that the expected
occupancy varies linearly with respect to the probability masses
and is piecewise constant with respect to the attained values.
These results suggest how the facility operator might design
prices such that the expected occupancy does not vary much
under small changes in the distribution of users’ impatience,
which is generally difficult to characterize accurately from data.
We demonstrate this idea via examples.

I. INTRODUCTION

Improved affordability of electric vehicles (EVs) has cat-
alyzed EV adoption trends such that by 2040 it is projected
that 58% of global new vehicle sales will be EVs [1]. This
surging adoption of EVs places increased demands on EV
charging facilities which are generally resource-constrained
and necessitates the study of the system-level behavior of
limited resources such as charging space. To study such
behavior, there have been efforts to study the problem from
various perspectives [2], [3], [4] including a pricing model
approach [5].

Additional past works have focused on studying EV
charging within a utility provider framework where the
utility provider and charging facility are separate entities
whose pricing engenders specific system-wide behavior [6].
Furthermore, in the paper [7] the authors present a location-
based pricing scheme and analyze its effects on system-wide
congestion. The paper [8] considers a spatiotemporal model
for rapid charging facilities where the authors utilize a queu-
ing theoretic model to predict charging demand when the
user arrival rate is not known a priori. The paper [9] models
EV charging within a queuing framework to to formulate an
equilibrium assignment model. Each of these previous works
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relies on specific modeling assumptions; however, none of
the aforementioned papers perform a sensitivity analysis
of their respective models to understand how their models
perform when the known information is erroneous. The need
for understanding EV charging model sensitivity is the main
motivator for the present work.

In the present paper, we focus on the model that is
originally presented in the paper [10]. Here, users arrive at
random times with a collection of random parameters whose
respective distributions are assumed to be known. Specifi-
cally, the user parameters are the user’s energy demand and
their value of time. Furthermore, in this model, users are
presented with a discrete and finite collection of charging
rates and energy prices from which they choose the charging
rate and price that minimizes the total cost to themselves.
Each charging rate is associated with a specific service level
pricing function that defines the total cost to the user of
choosing a particular charging rate as a function of the user’s
demand parameters. Although this paper is applying the user
choice model to analyze electric vehicle charging facilities,
cloud computing [11] and ride-sharing services [12] among
others are examples of when users can face similar trade-off
decisions when paying for a service [13].

An appropriately designed pricing scheme allows the
charging facility operator to manage the limited resources.
Since charging facilities face random demands it is challeng-
ing to predictively analyze the exact space usage at any given
time. Instead, a charging facility may study the expected
occupancy and the expected total charge rate of the actively
charging users. Using a pricing scheme of [5], [10] one can
derive explicit formulas for these expected values under the
assumption that the distributions of user arrivals and their
parameters are known. Specifically, it is seen in the papers
[5], [10] that the computation of these system-wide expected
values is dependent on knowing the distribution of user’s
value of time.

In practice, given the wide availability of data on EVs and
consumer habits, it is reasonable to assume that a charging
facility can obtain good estimates of quantities that can be
explicitly measured such as user arrival times, and user’s
energy demands. However, to compute the aforementioned
system-wide attributes a charging facility must also know the
distribution of the user’s value of time to characterize system-
wide behavior. While recent studies attempt to quantify such
behavioral factors [14] in practice, obtaining an accurate
characterization remains challenging.

We are motivated to quantify and analyze the sensitivity



of the expected occupancy to mischaracterizations of user’s
value of time distribution. To do so, we derive an expression
that describes how the expected occupancy at a charging
facility changes with a given characterization of the user’s
value of time. Furthermore, we derive a worst-case error
bound for the expected occupancy. We specifically consider
the cases when a user’s impatience can be placed into a finite
number of categories, i.e., the impatience factor is a discrete
random variable. To the best of our knowledge, this is the
first work performing a sensitivity analysis of a pricing model
implemented at an EV charging facility.

This paper is organized as follows: Section II presents the
model formulation for the pricing model. Section III presents
the sensitivity analysis results. Section IV details a numerical
study and Section V presents the conclusions.

A. Notation

For an indexed set of variables {xk}, we let ∆i
jx denote

the difference between the variable with index i and j, i.e.,
∆i
jx = xi − xj . When considering a collection of inde-

pendent and identically distributed (i.i.d) random variables
indexed by subscripts, we use non-subscript variables when
referring to properties that hold for any of the i.i.d random
variables. For example, E[x] is the expectation of each i.i.d
random variable xj .

II. PROBLEM FORMULATION

In this section, we present a pricing model for EV charging
that was initially introduced in [5], [10]. We consider a
defined service level model where users directly choose from
a discrete set of charging rates and prices upon arrival at
the charging facility; a user pays a higher price for a faster
charge rate. A rational user chooses a charge rate depending
on the amount of charge required for their EV, the prices
and rates set by the charging facility, and their impatience
factor, i.e., their value of time. In this paper, we assume that
users generally prefer to minimize the cost to themselves and
depart the facility immediately upon receiving a full charge.

At this facility, a user j arrives at some time τj (in hr.) with
charging demand xj (in kWh), and an impatience factor αj
(in $/hr.). Throughout the paper, we make the following
assumption about the aforementioned variables.

Assumption 1 (Users). User arrivals at the charging facility
are a Poisson process with parameter λ (in EVs/hr.). Individ-
ual charging demand xj , and the impatience factor αj for
each user j are random variables which are independent
and identically distributed (i.i.d). In particular, xj is a
continuous random variable with support [xmin, xmax] for
some 0 < xmin < xmax. Furthermore, αj is a discrete
random variable with M possible values whose probability
mass function pA(α; p, a) has a probability mass vector p =
[p1, . . . , pM ]> corresponding to the impatience value vector
a = [a1, . . . , aM ]> such that P(αj = ai) = pA(ai; p, a) =
pi for each i.

When using the probability operator P( · ) for αj it is
understood that this probability is computed with some

probability mass vector p and impatience category vector a.
By assuming αj are i.i.d discrete random variables, we
assume the population of users is divided into a finite number
of impatience categories; for example, each user might be
either patient with a low value of α or impatient with a high
value of α.

The charging facility offers L service levels. Each service
level ` ∈ {1, . . . , L} corresponds to a distinct charging rate
R` > 0 (in kW) and price V ` > 0 (in $/kWh) that is the
cost per unit energy for the service level. Thus, user j with
energy demand xj pays xjV ` (in $) to receive a full charge
over the time horizon xj/R` (in hr.) when choosing service
level `. To distinguish the parameters related to the charging
facility from those related to the users, the charging facility
parameters are upper case and indexed by a superscript, while
the parameters for the users are lower case and indexed by
a subscript j.

Assumption 2 (Model Charging Rates). Among L service
levels offered by the charging facility, a higher charging rate
is more costly, i.e., if Ri > Rk then V i > V k. Moreover,
charging rates and prices are distinct so that Ri 6= Rk for
all i 6= k. Lastly, and without loss of generality, the charging
facility’s pricing functions are enumerated such that V 1 <
V 2 < . . . < V L and therefore R1 < R2 < . . . < RL.

A user can therefore pay less by choosing a slower charge
rate but must balance this with their impatience. In particular,
the total cost faced by a user arriving at the charging facility
with impatience factor αj , charging demand xj , and who
chooses service level `, is

g`(xj , αj) = xjV
` + αj

xj
R`

. (1)

In (1), the first term of the sum is the energy cost to the
user and the second term is the cost associated with how
much a user values their time. Individual users choose a
service level at a charging facility which minimizes their total
cost of charging factoring in their impatience. To that end,
let S(xj , αj) : [xmin, xmax]×{a1, . . . , aM} → {1, . . . , L} be
defined by

S(xj , αj) = arg min
`∈{1,...,L}

g`(xj , αj) . (2)

Then, a rational user j chooses service level S(xj , αj) in
order to minimize their total cost as formalized in the later
stated assumption.

For notational convenience, we also define the values rj
to be the charging rate and cost per unit of energy chosen by
user j after solving (2), i.e., rj = RS(xj ,αj). Observe that the
user charging times xj/rj , being uniquely determined by xj
and αj , constitute a collection of independent and identically
distributed random variables. Furthermore, this means the
time a user spends at the charging location is xj/rj where
this is the time for a user to receive a full charge based on
their chosen service level.

Assumption 3 (Users are Rational). Each user chooses
a charging rate according to (2) and leaves the charging



facility once they have satisfied their charging demand. Thus,
user j occupies a charger at the facility during the time
interval [τj , τj + xj/rj ].

Charging facilities are concerned with adhering to user
capacity restrictions. Let the occupancy set at the charging
facility at time t be defined as

N(t) = {i : t ∈ [τi, τi + xi/ri]}

and let η(t) = |N(t)| be the cardinality of the occupancy set.
Since users are assumed to leave immediately after receiving
a full charge, N(t) is also the set of actively charging users.

III. MAIN RESULTS

The capacity constraint on EV charging facilities makes it
imperative for charging facility operators to have an accurate-
as-possible estimate of the expected occupancy. At a given
charging facility with pricing functions of the form of (1),
users arrive at random times with random parameters to
ultimately make a service level choice that minimizes the
cost to themselves by solving (2).

To obtain an expression for the occupancy, recall Lemma 1
below from the paper [5], which details how a user j arriving
with charging demand xj and impatience factor αj chooses
a specified service level while facing pricing functions of
the form of (1). Prior to presenting Lemma 1 we introduce
Assumption 4 which restricts the possible energy price and
charging rate values set by the charging facility.

Assumption 4. A charging facility offers L service levels
with price per unit energy V ` and charging rate R` accord-
ing to Assumption 2 such that ∆i

kV/∆
k
i R̄ 6= am for all k, i

for any m.

Assumption 4 eliminates the possibility of having two
minimizers in (2). We consider the case where consequently,
Lemma 1 also provides an analytical expression for the prob-
ability mass function (PMF) for user’s choice of charging
rate.

Lemma 1 (Corollary 1 of [5]). Given Assumptions 1, 2, 3,
and 4, consider the set of L functions of two independent RVs{
g`(xj , αj)

}L
`=1

where each g` is as defined in (1). Then, for
k ∈ {1, . . . , L},

P
(
S(xj , αj) = k

)
= P

(
¯
αk < αj < ᾱk

)
where

¯
α1 = −∞ and ᾱL = +∞ otherwise ᾱk =

mink<i
∆i

kV

∆k
i R̄

,
¯
αk = maxi<k

∆i
kV

∆k
i R̄

. Furthermore, the charg-
ing rate rj chosen by each user j is a discrete random
variable each with PMF

pr(r; p, a) =


P
(
¯
α1 < αj < ᾱ1

)
if r = R1 ,

...
P
(
¯
αL < αj < ᾱL

)
if r = RL .

(3)

Lemma 1 demonstrates that the probability of choosing a
service level solely depends on the likelihood that a user j’s
impatience factor αj ∼ pA(α; p, a) falls within the interval
(
¯
αk, ᾱk).

A charging facility with pricing functions of the form (1)
experiences user arrivals with i.i.d impatience factors that
are distributed with pA(α; p, a). Any expected value that is
dependent on pA(α; p, a) is written as E[ · ; p, a]. Specifically,
one can write the expected occupancy at a charging facility
as E[η(t); p, a] = λE[x/r; p, a] = λE[x]E[ 1

r ; p, a].
Since we in this paper are interested in studying how

the expected occupancy changes when users’ impatience
changes, we start by stating a general upper bound on the
deviation of the expected occupancy.

Proposition 1. Consider a charging facility operating under
Assumptions 1, 2, 3, and 4. Assume that η(t) represents the
occupancy possibly with two different probability mass func-
tions for the impatience factor, pA(α; p, a) and pA(α, p̃, ã),
then

|E[η(t); p, a]− E[η(t); p̃, ã]| ≤ λE[x]

(
1

R1
− 1

RL

)
.

Moreover, there exists probability mass functions such that
the bound is tight.

Proof: The choice of charging rate is independent of
the user’s demand, hence E[η(t); p, a] = λE[x]E[ 1

r ; p, a] .
Let pr(r; p, a) and pr(r; p̃, ã) denote the corresponding dis-
tributions for the charging rates, according to Lemma 1. We
then obtain |E[η(t); p, a]− E[η(t); p̃, ã]| =
λE[x]

∣∣∣∑L
`=1

pr(R`;p,a)
R` −

∑L
`=1

pr(R`;p̃,ã)
R`

∣∣∣ . From Proposi-
tion 1 it can be seen that it is possible to choose distributions
of α such that pr(R1; p, a) = 1 or pr(R

L; p, a) = 1,
and pr(R

1; p̃, ã) = 1 − pr(R
1; p, a), pr(RL; p̃, ã) = 1 −

pr(R
L; p, a).

Proposition 1 demonstrates that the difference between
the true and mischaracterized expected occupancy is upper
bounded. Assuming a correct characterization of λ and E[x],
this worst-case upper bound is driven by the difference
of the inverse of the fastest and slowest charging rate. In
practice, a charging facility operator may not have a correct
characterization of the arriving user’s impatience factors but
they can set the charging rates in such a way that the
difference of the inverses of the slowest and fastest charging
rate is small.

Given the PMF of choosing a particular charging rate
from Lemma 1, we can derive an expression for how the
expected occupancy E[η(t); p, a] varies with probability mass
values. The following theorem formalizes the gradient of
E[η(t); p, a] with respect to p.

Theorem 1. Consider a charging facility operating under
Assumptions 1, 2, 3, and 4 with L pricing functions of
the form of (1). Recall that E[η(t); p, a] is the expected
occupancy where user’s impatience factors are distributed
with pA(α; p, a). For any time t at steady state,

∇p E[η(t); p, a] = λE[x]


∑L
`=1

1`(a1)
R`

...∑L
`=1

1`(aM )
R`

 , (4)



where 1`(ai) = 1 if
¯
α` < ai < ᾱ` and 1`(ai) = 0 otherwise.

Proof: Given a charging facility operating under As-
sumptions 1, 2, 3, and 4 with L pricing functions of the
form of (1). Recalling the PMF of αj , we note that the
probability of choosing a specified charge rate ` has an
equivalence where P

(
¯
α` < αj < ᾱ`

)
=
∑M
m=1 pm1`(am) .

Recall that E[η(t); p, a] = λE[x]E[ 1
r ; p, a]. Furthermore,

one can expand on E[ 1
r ; p, a] such that E

[
1
r ; p, a

]
=∑L

`=1 pr(R
`; p, a) 1

R` =
∑L
`=1 P

(
¯
α` < αj < ᾱ`

)
1
R` =∑L

`=1

(∑M
m=1 pm1`(am)

)
1
R` . Given the prior substitu-

tions, one can compute the gradient of E[η(t); p, a] with
respect to p leading to (4).

From (4) in Theorem 1 one can see that the gradient of
E[η(t); p, a] is constant; hence, E[η(t); p, a] varies linearly
with p. A direct corollary of Theorem 1 is that of the gradient
of the expected occupancy when the probability mass values
are mischaracterized. Specifically, consider the case where a
charging facility is operating with the impatience category
vector a but has mischaracterized the impatience probability
mass vector to be p̃ such that pA(ai; p̃, a) = p̃i. In reality,
the true probability mass vector of the arriving users is
p and hence the charging facility is operating under a
mischaracterized impatience PMF. Observing that this result
is analogous to Theorem 1 one concludes that when the
probability mass vector is mischaracterized to be p̃ the error
in the expectation E[η(t); p, a]− E[η(t); p̃, a] varies linearly
with p−p̃, i.e,∇p−p̃ (E[η(t); p, a]− E[η(t); p̃, a]) is constant.

In addition to the variation of E[η(t); p, a] with respect
to p, a charging facility is also interested in the variation
of E[η(t); p, a] with respect to a. This is formalized in the
following theorem.

Theorem 2. Consider a charging facility operating under
Assumptions 1, 2, 3, and 4 with L pricing functions of
the form of (1). Recall that E[η(t); p, a] is the expected
occupancy where user’s impatience factors are distributed
with pA(α; p, a). For any time t at steady state,

1) For all p, a such that for every ai there exists a k > 0
such that ai ∈ (

¯
αk, ᾱk), it holds that

∇a E[η(t); p, a] = 0 .

2) For all a, for all i, and for all k < L,

lim
ãi↑ᾱk

E[η(t); p, ã]− lim
ãi↓ᾱk

E[η(t); p, ã] =

lim
ε→0+

λE[x]

(
L∑
`=1

pi
R`
(
1`(ᾱ

k − ε)− 1`(ᾱk + ε)
))

,

(5)

where ãj = aj for some j, and 1`(am) = 1 if
¯
α` <

am < ᾱ` and 1`(am) = 0 otherwise.

Proof: To prove the first part of Theorem 2, recall
E[η(t); p, a] = λE[x]E[ 1

r ; p, a]. Furthermore, E
[

1
r ; p, a

]
=∑L

`=1

(∑M
m=1 pm1`(am)

)
1
R` where 1`(am) = 1 if

¯
α` <

am < ᾱ` and 1`(am) = 0 otherwise for any m ∈
{1, . . . ,M}. Since we have p, a such that ai ∈

(
¯
αk, ᾱk

)
for some k for all i then the quantity E

[
1
r ; p, a

]
is constant

with respect to a. This is because ai ∈ (
¯
αk, ᾱk) and since the

probability mass remains in the interval there is no change
to E[η(t); p, a]. Hence, ∇a E[η(t); p, a] = 0.

To prove the second part of Theorem 2, we ana-
lyze the difference E[η(t); p, a−] − E[η(t); p, a+] where
E[η(t); p, a−] = limãi↑ᾱk E[η(t); p, ã] and E[η(t); p, a+] =
limãi↓ᾱk E[η(t); p, ã] and ãj = aj for some j. From be-
fore, realize that E[η(t); p, a−] = λE[x]E[ 1

r ; p, a−] and
E[η(t); p, a+] = λE[x]E[ 1

r ; p, a+]. Substituting the summa-
tion form of E[ 1

r ; p, a−] and E[ 1
r ; p, a+] leads to (5).

Theorem 2 first states that the expected occupancy does
not vary when a impatience value ai is changed within a
given (ᾱk,

¯
αk) interval. The second part of the theorem states

what happens if the change of ai crosses the boundary of an
interval (ᾱk,

¯
αk) , i.e., a change in the expected occupancy.

IV. NUMERICAL STUDY

In this section, we present a numerical study that illus-
trates practical occurrences of Proposition 1, and Theorem 1
and 2.1 Consider a charging facility offering L = 3 service
levels that is capacity-constrained on the expected occupancy
and is deciding between offering two sets of prices and
charging rates to meet this constraint. Specifically, this charg-
ing facility can either operate under the pricing scheme A
where the prices are V 1

A = 0.15, V 2
A = 0.25 and V 3

A = 0.32
in $/kWh. and the charging rates are R1

A = 15, R2
A = 30

and R3
A = 35 in kW. Alternatively, the charging facility

can use pricing scheme B where V 1
B = 0.05, V 2

B = 0.25
and V 3

B = 0.33 in $/kWh. and R1
B = 15, R2

B = 30 and
R3
B = 35 in kW. In this particular case, a charging facility

has a fixed set of charging rates to offer at each service
level but is deciding what prices to charge for energy at
each service level. At this charging facility user arrivals are
a Poisson process with λ = 30 EVs/hr. Furthermore, user’s
energy demands (in kWh.) are distributed with xj ∼ fX(xj)
where fX(xj) = U(5, 100). Note that U(·) denotes a uniform
distribution.

Lastly, the charging facility operator estimates user’s impa-
tience factor to be a PMF that is defined to be pA(α; p̃, ã).
We specifically consider the case when there are M = 4
impatience profiles that describe the user population and
assume that the charging facility is correctly estimating that
M = 4 profiles also exist such that ã = [ã1, ã2, ã3, ã4]>.

Given the aforementioned prices and charging rates for
pricing schemes A and B we consider the following two
potential cases a charging facility may experience: first, a
case when the true distribution of the impatience of users
is in fact a discrete random variable with p = p̃ and
a 6= ã and secondly when the true distribution is not a
discrete random variable but in fact a bounded multi-modal
normal distribution. In considering these cases, we are able

1The Python code for this case study is available at https://github.
com/gtfactslab/cdc2021_evcharging_sensitivity



to illustrate which of the two pricing schemes is robust to
these types of errors by quantifying the error in the expected
occupancy from the PMF estimate the facility has made
and the two scenarios for the true distributions of the user
impatience.

First consider the case when a charging facility has
estimated the user impatience PMF to have parameters
p̃ = [0.25, 0.25, 0.25, 0.25]> and ã = [2, 10, 20, 25]> but
in reality the users impatience distributions are p = p̃ but
a = [2, 5.5, 20, 25]>. The discrepancy between a and ã will
result in differing values for E[η(t); p, a] and E[η(t); p̃, ã],
respectively.

We present Fig. 1 which illustrates pA(αj ; p̃, ã) and
pA(αj ; p, a) in the top and bottom plots, respectively, with
the respective values (

¯
αk, ᾱk) for both pricing schemes are

displayed. Recall from Lemma 1 that the probability mass
of pA(αj ; p̃, ã) or pA(αj ; p, a) in the non-empty intervals
(
¯
αk, ᾱk) determines the probability of users choosing service

level k. As a result a discrepancy between a and ã can lead to
different expected occupancy between the estimates and what
occurs in practice. While problematic, a charging facility can
mitigate such a discrepancy by choosing a pricing scheme
that is resilient to such mischaracterizations.

Given the pricing schemes A and B with ã we illustrate
the intervals (

¯
αk, ᾱk) in the plots of Fig. 1. Recall S(xj , αj)

from (2), then the choices made by user j in pricing schemes
A and B are SA(xj , αj) and SB(xj , αj), respectively.
Then, a charging facility with estimate ã concludes that
P(SA(xj , αj) = 1) = P(SA(xj , αj) = 2) = 0.25 and
P(SA(xj , αj) = 3) = 0.50, and P(SB(xj , αj) = 1) =
P(SB(xj , αj) = 2) = 0.25 and P(SB(xj , αj) = 3) = 0.50.

In reality, the true impatience values a demonstrated in
the bottom plot of Fig. 1 show that P(SA(xj , αj) = 1) =
P(SA(xj , αj) = 2) = 0.25 and P(SA(xj , αj) = 3) = 0.50
and that P(SB(xj , αj) = 1) = 0.50, P(SB(xj , αj) = 2) =
0 and P(SB(xj , αj) = 3) = 0.50. In practice, for pricing
scheme B this states that even though a charging facility is
offering 3 service levels, only 2 of them will be chosen by
users. Numerically, this leads to an over 20% error between
E[η(t); p, a] and E[η(t); p̃, ã] when a charging facility utilizes
pricing scheme B due to the charging facility erroneously
underestimating the expected occupancy. However, in this
case, no error arises when using pricing scheme A.

While this is illustrative, this represents the considerations
a charging facility must make when setting energy prices
or charging rates to make their pricing scheme resilient to
mischaracterizations of users’ impatience. In analyzing the
variability of the expected occupancy when utilizing ã or a
one can see an illustration of Statement 1 of Theorem 2.
Specifically, if a1 > ᾱ1 for pricing scheme B then State-
ment 1 of Theorem 2 would predict that the expectation
would have remained the same. However, since a1 < ᾱ1

for pricing scheme B the difference in the expectation is
as predicted in Statement 2 of Theorem 2. We illustrate the
variation of the expected occupancy with varying ã for both
pricing schemes in Fig. 2 when both the estimated and true
impatience are discrete random variables. Lastly, consider the

ᾱ1 ᾱ2ᾱ1 ᾱ2

αj [$/hr.]

p
A

(α
j
;p̃
,ã

)

User Service Level Choice Regions
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0.2
0.3
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p
A

(α
j
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,a
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Fig. 1. A charging facility decides between pricing scheme A or B when
it has estimated the user impatience as in this figure. In reality, we suppose
the user impatience at $10 per hr. is really $5.5 per hr.. The discrepancy
between the estimated impatience values ã and the true impatience values
a leads to the charging facility having an incorrect estimate of the expected
occupancy. As described in Section IV, pricing scheme A leads to the same
expected occupancy under both the true and estimated impatience, while
pricing scheme B leads to expected occupancy that is over 20% larger
for the true impatience distribution compared to the estimated impatience
distribution.

hypothetical scenario where ã = a but p̃ 6= p, then one can
see from analyzing Fig. 1 that E[η(t); p, a] will vary linearly
with p.

Secondly, we consider the case when a charging facility
has estimated the impatience to be a discrete random variable
as before but the true user impatience distribution is a
truncated multi-modal normal distribution with probability
density function (PDF) fA(αj). Given the distribution illus-
trated in Fig. 3 we have that P(SA(xj , αj) = 1) = 0.221,
P(SA(xj , αj) = 2) = 0.281 P(SA(xj , αj) = 3) = 0.498
and that P(SB(xj , αj) = 1) = 0.431, P(SB(xj , αj) = 2) =
0.070 and P(SB(xj , αj) = 3) = 0.499. This leads to an over
15% error in the expected occupancy between the estimated
and true user impatience when a charging facility utilizes
pricing scheme B. Furthermore, pricing scheme A now has
an approximately 3% error from the true value where the
charging facility has overestimated the expected occupancy.
The increase in error in pricing scheme A in this scenario is
due to the portion from the first mode of fA(αj) that is in
(
¯
α2, ᾱ2), i.e., (ᾱ1, ᾱ2), of pricing scheme A and the portion

of the second mode of fA(αj) from the first mode that is in
(
¯
α2, ᾱ2), i.e., (ᾱ1, ᾱ2), of pricing scheme B.

We present the numerical values from this numerical study
in Table I. In both scenarios where the true impatience
distributions are a PMF and a PDF, respectively, we see that
pricing scheme A is more resilient to mischaracterizations
of pA(αj ; p̃, ã) (or fA(αj)) than pricing scheme B. In fact,
pricing scheme B leads the charging facility operator to esti-
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Fig. 2. An EV charging facility where users arrive according to a Poisson
process with random demand and impatience decides between a Pricing
Scheme A and B. At arrival, users choose a charging rate from a collection
of service levels that minimizes the total cost to themselves that includes
their impatience. A charging facility has estimated the impatience PMF
for the arriving users and utilizes this estimate to compute the expected
occupancy for both pricing schemes. In this plot, we illustrate the variation
in the expected occupancy when ã = [2, ã2, 20, 25]>. As a charging
facility’s estimate of ã2 varies so does the expected occupancy under each
pricing scheme.
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Fig. 3. A charging facility decides between implementing pricing scheme
A or B when it has estimated the user impatience as in the top plot of Fig.
1. In reality, we suppose the user impatience is a truncated multi-modal
normal distribution as is shown in this plot. Similar to the case in Fig. 1,
Pricing Scheme A leads to true expected occupancy that is within 3% of
the estimated expected occupancy, while Pricing Scheme B leads to true
expected occupancy that is over 15% higher than estimated.

mate a lower occupancy when in reality the value is higher.
This potentially overburdens the facility’s space resources.
In practice, an operator gains insightful information from the
operation of a charging facility on users’ impatience that will
guide them in choosing mischaracterization-resilient prices
and charging rates.

V. CONCLUSION

In this paper, we studied the problem of a charging facility
operating with a defined service level model where users
arrive randomly with a collection of random parameters. We
specifically focus on the case where a charging facility is
primarily interested in characterizing the expected occupancy
at the charging facility. To compute the expected occupancy,
a charging facility utilizes its knowledge on the distributions
of the user arrivals and the respective parameters (energy
demand and impatience factor). While useful, these computa-
tions are vulnerable to incorrect assessments by the charging
facilities of the distribution of user parameters. Specifically,

TABLE I
EXPECTED OCCUPANCY FOR DIFFERENT DISTRIBUTIONS AND PRICING

Expected Occupancy Expected Occupancy
Probability Distribution Pricing Scheme A Pricing Scheme B
Estimated Impatience 61.875 61.875
True Discrete Impatience 61.875 75.0
True Multi-Modal Impat. 60.38 71.40

within the model, computing the expected occupancy is
highly dependent on having the correct knowledge of the
distribution of user’s impatience. As a result, we study the
variability in the expected occupancy when the distribution
and values of the impatience factor are mischaracterized.
Furthermore, we also compute a worst-case error bound for
the expected occupancy when the impatience factor is mis-
characterized. We study the analytical results via a numerical
study that illustrates how a charging facility operator can
intelligently set prices and charging rates to minimize the
effects of mischaracterized user’s impatience.
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