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Abstract

Transcripts generated from audio or video files require
proper punctuation to be readable. In this paper, we in-
vestigate the use of different deep learning architectures for
automated punctuation of transcripts. Specifically, we con-
struct five different architectures which are trained on punc-
tuated transcripts sourced from TED talks. Each architec-
ture is explored in detail; we highlight the benefits and de-
ficiencies of each one by analyzing each architecture’s per-
formance in punctuation prediction with three chosen punc-
tuation marks. Furthermore, we analyze the effects of the
data utilized on the performance of the neural network ar-
chitectures.

1. Introduction
Proper punctuation is useful for improving accessibility

to information in various domains that deal with audio and
video data. Specifically, online education, entertainment
and media, law, can become more accessible to people who
heavily rely on transcriptions. While these transcripts are
often written manually, they can be generated in an auto-
mated fashion as well. Transcripts of speeches derived from
pure audio or video format can be generated using Auto-
matic Speech Recognition (ASR). While ASR is effective at
generating text transcripts of audio, it often does not punc-
tuate the output text. This can lead to less than optimal tran-
scriptions of audio, e.g, podcasts, TED talks, seminars, etc.,
that can be difficult to parse by a human reader. Transcrip-
tions are of particular importance to people with hearing
disabilities, if they cannot make use of the original audio.
In addition, poor punctuation hinders the ability to use the
derived transcript as a useful dataset for training networks
for tasks such as language translation.

Previous work addresses the problem of punctuation
restoration by using long short-term memory (LSTM) [15]
or bi-redirection recurrent neural networks (RNNs) [16]. In
[15] the authors focus on solely implementing a recurrent
neural network to apply periods and commas to transcripts
which are not punctuated; [15] derives their LSTM frame-
work from [13]. Here, the authors use a two stage model
where the authors combine textual and speech-pause infor-
mation as stages which inform the neural network where
to punctuate. In [16], the authors approach addresses the
punctuation problem by leveraging bi-directional LSTMs
and implementing an attention mechanism which increases
the network’s ability to find relevant context for punctuation
decisions.

Furthermore the paper [9] uses OpenNMT [10] with a
bi-directional RNN architecture while simultaneously uti-
lizing parts of speech (POS) tags to make punctuation pre-
dictions. Specifically, in [9], the bi-directional RNN is the
first layer which is implemented as an LSTM while the POS
tags are a second layer which adds syntactic information.
In [18], deep bi-directional LSTMs are studied to under-
stand whether adding layers significantly improves the per-
formance of a neural network.

In this paper, we implement a series of NN architec-
tures to achieve this task. Specifically, we implement a bi-
directional LSTMs, Gated Recurrent Unit, Transfer Learn-
ing, and variations coupling each of these techniques. We
aim to improve the performance of past implementations
while also implementing punctuation beyond commas and
periods. This paper is organized at follows: Section 2 cov-
ers the methodology, particularly the architectures of the
neural networks of interest, Section 3 contains the results
of the various neural network implementations as well as a
detailed discussion of those results. The discussions elabo-
rate on observations, and potential future improvements that
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can be made to the code base. Lastly, Section 4 concludes
the paper.

2. Approach and Methodology
In this section, we describe the datasets we are using as

well as the five different implemented neural network ar-
chitectures. A brief structural characterization of each ar-
chitecture is provided. We implement the networks using
Pytorch [12] on Google’s Colaboratory.

2.1. Datasets

For this paper, we utilize the IWSLT 2012 dataset [2]
which consists of punctuated transcriptions of TED talks.
This dataset is utilized in the IWSLT Evaluation Campaign
for three research tasks: automatic transcription, speech
translation and text translation. Additionally, it is used for
the punctuation prediction task in [16] and [3], where it is
described in more detail in the latter. The IWSLT Machine
Translation (MT) track consists of training, development
and evaluation data which total 2.4M words, all of which
are used in this work.

To preprocess this dataset, we choose to remove cer-
tain punctuation symbols and limit the data to only contain
punctuation we are interested in, i.e., commas, periods and
question marks. Moreover, the data is split into fixed-size
segments during preprocessing. Specifically, the sentences
were saved in segments that were of a particular length. In
case a sentence is incomplete in a certain segment, the entire
sentence is added to the next segment. However, sentences
which are longer than the segment size are discarded. Each
word is considered to be followed by a punctuation tag, with
the possible tags being comma, period, question mark and
none. We implement a random 70-20-10 split of the pre-
processed data segments to generate the training, validation,
and test sets. When using a segment size of 32, this results
in a training, validation, and test dataset of length 49k, 14k
and 7k, respectively.

We choose to utilize transfer learning as one of the net-
work architectures which requires the usage of an addi-
tional dataset from a different domain. Hence, for trans-
fer learning, the data is comprised of New York Times ar-
ticles sourced from the New York Times archive [1]. The
New York Times archive API is used to access articles in
the archive; subsequently, we preprocess the article text in
the same manner as described above. A dataset of 128k in-
stances (each with segment size 32) is used to pre-train the
transfer learning model.

2.2. Neural Network Architecture

We propose to evaluate the effectiveness of different
LSTM architectures for the punctuation prediction task.
Here, we choose to implement architectures using LSTMs,
BLSTMs (bidirectional LSTM) and GRUs. Additionally,

we also implement transfer learning by pretraining on a
large dataset and fine-tuning on the training set. The model
architectures implemented are described below. The Adam
optimizer was used for all architectures, and the loss func-
tion used was the negative log likelihood (NLL Loss).

2.2.1 LSTM

Long Short Term Memory (LSTM) Networks are a type of
RNN (Recurrent Neural Network) that can store long-term
temporal dependencies. They are well suited for classifi-
cation, prediction, and processing when dealing with time-
series data. LSTMs have been applied to a variety of areas
such as robot control [8], time series prediction [6], speech
recognition [14], sign language translation [7], and punctu-
ation [15].

Recently, LSTMs have been used for punctuation pre-
diction [15] with a reasonable degree of accuracy. This type
of network is well-suited for punctuation prediction, since
the punctuation symbol after a certain word can depend on
a variable number of prior words.

For the task of automatic punctuation, the architecture
of the network we use consists of an embedding layer, an
LSTM layer and a linear layer, followed by an application
of the softmax function. The dimensions of the embedding
layer and hidden layer are 1024 and 256, respectively.

2.2.2 BLSTM

The bidirectional LSTM architecture consists of two
LSTMs — one processes the input sequence as is, and the
other processes the reverse of the input sequence. This is
important for punctuation prediction because the symbol
after a word can depend on the words following it in ad-
dition to the words preceding it. An illustration of punc-
tuation prediction using a BLSTM is depicted in Figure 1.
In Figure 1 we see that the initial sentence passes through
the BLSTM and ultimately the network classifies whether
each individual word is followed by a particular punctuation
mark or none at all. Based on the results obtained in [18],
we also tested an architecture consisting of two BLSTM
layers. This particular case is denoted as 2 BLSTM in Table
1.

2.2.3 Gated Recurrent Unit

Gated Recurrent Unit (GRU) is an RNN architecture that
is similar to Long Short Term Memory (LSTM) networks
which was first introduced in [4]. A general GRU is illus-
trated in 2. GRUs are simpler than LSTM networks, and
have been shown to work reasonably well with certain small
datasets [5]. However, GRUs try to tackle the vanishing gra-
dient problem by employing an update gate and a reset gate.
GRUs have been used for punctuation of transctipts [5], and
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Figure 1. Bi-directional LSTM Illustration of punctuation classi-
fication. Here, we see the the network classifies whether there
should be a period, comma, question mark, or no punctuation af-
ter a particular word in the sentence. Specifically, this examples
illustrates a comma being added after the word ”school” and a pe-
riod after the word ”learning”.

Figure 2. An illustration of a Gated Recurrent Unit (GRU) from
[17]. A key feature of the GRU is it supports the gating of the
hidden state. While related to LSTMs, it is a much simpler archi-
tecture than LSTMs.

also have been used in conjunction with other architectures
for punctuation [16]. In this paper, we use a stand alone
GRU architecture consisting of 8 layers along with a linear
layer and show that the network performs reasonably well
for most symbols. The results are detailed in Table 1.

Architecture Period Comma Question Overall
LSTM 0.324 0.434 0.084 0.334

BLSTM 0.569 0.574 0.182 0.527
2 BLSTM 0.594 0.560 0.154 0.520

GRU 0.565 0.583 0.183 0.527
BLSTM-Transfer 0.606 0.560 0.161 0.526

Table 1. F1 Scores for the various architectures tested

2.2.4 Transfer Learning

The availability of punctuated speech transcripts is limited,
but there is no dearth of punctuated text available online.
We hypothesize that using a larger dataset, which is not nec-
essarily speech-based text, for pretraining the network fol-
lowed by fine-tuning on speech-based text could improve
the results obtained in punctuating speech-based text.

Hence, we choose to utilize transfer learning as one of
the architectures through which we implement the auto-
matic punctuation mechanism. Transfer learning contrasts
traditional supervised learning in that it allows for different
domains to be utilized during the training and testing of the
network [11].

Specifically, the network architecture we use for transfer
learning is the same as that of the BLSTM model.The model
is initially trained on the NYT data, and subsequently fine-
tuned on the TED transcripts data. The results obtained us-
ing transfer learning are listed as BLSTM-Transfer in Table
1.

3. Results and Discussion

The neural network architectures presented in Section
2.2 were implemented and trained on the datasets described
in Section 2.1. The models were evaluated on the precision,
recall, and F1 scores; this was calculated per punctuation
and overall. This metric was chosen because of the class
imbalance — the number of words with no punctuation far
outnumbered those with any of the three symbols. The F1
scores obtained for each of the architectures is shown in Ta-
ble 1. For reference, the state-of-the-art model that predicts
the same set of punctuation symbols produced an overall F1
score of 0.63 for this task [16].

As seen in Table 1, the results obtained using the LSTM
model was subpar compared to the five other architectures
tested. The other architectures (all bidirectional) produced
similar results, with overall F1 scores of 0.52. Unlike
[18], we did not see a significant improvement when two
BLSTM layers were used instead of one, although the F1
score for the period symbol was higher. The GRU archi-
tecture achieved very similar results in comparison with the
BLSTM architecture. With transfer learning, the F1 score
of the period symbol increased, which could indicate that
the punctuation style for written and spoken word is differ-
ent for commas and question marks, but similar for periods.



Figure 3. Examples of punctuation mismatches.

It was found that all of the models performed poorly on
question mark prediction. In particular, the precision val-
ues of the models for the question mark symbol were very
low, which shows that there were a large number of false
positives. One hypothesis for this poor performance is the
class imbalance. An analysis of the dataset showed that
the number of question mark symbols in the text was far
fewer than that of periods and comma, as shown in Table
3. For the TED transcripts dataset, the number of periods
and commas were more than 10 times the number of ques-
tion marks. This ratio is even more skewed for the NYT
dataset. The BLSTM-Transfer model produced a lower F1
score for question marks than the other BLSTM models,
which supports this theory. A large dataset with a similar
ratio of punctuation symbols may be more useful for trans-
fer learning. The authors of [16] noted that using attention
mechanism helped improve the F1 score of question marks,
because focusing on certain words such as “what”, “how”,
“where”, and so on can be good indicators of questions.

Figure 3 demonstrates some examples of predictions
made using the BLSTM model and the corresponding
ground truth punctuation. In the first example, the predicted
punctuation does not match the ground truth precisely, but
the prediction is well formed and the sentence coveys the
intended meaning. This output would be acceptable since
the main focus is to improve readability of the text without
modifying the meaning. The prediction in the second exam-
ple is an acceptable style of speech-based text, but modifies
the intended meaning to a certain degree. The third example
is also acceptable in form, but the meaning is altered signif-
icantly. This instance exemplifies the difficulty of the task
— predicting valid punctuation is different from predicting
punctuation that fits the context.

Another interesting finding during the experiments was
that a relatively small segment length of 32 produced better
results than larger segment lengths. Our initial presumption
was that a larger segment length would be better, since it

Hyperparameter Value
Embedding Dimension 1024

Hidden Dimension 256
Learning Rate 10−4

Batch Size 16
Segment Size 32

Table 2. Model hyperparameters which provide the best model per-
formance across the network architectures of interest.

Dataset Period Comma Question Mark
TED Transcripts 133,970 165,002 11,388

NYT Archive 241,659 29,1813 3,301
Table 3. Punctuation Symbol Counts in Datasets.

provides more context while determining the punctuation
symbol that follows a word. Additionally, speech text can
have long sentences, which would be ignored while training
when a small segment length is used. However, we found
that a segment length of 100 resulted in an F1 score of 0.49,
where as a segment length of 32 for the same architecture
resulted in an F1 score of 0.52. One plausible explanation
for this could be that with smaller segments, there are fewer
sentences per segment, making it easier for the model to
learn phrase and sentence boundaries.

4. Conclusion and Future Work
In this paper, we study the problem of punctuation pre-

diction for speech text by using various RNN architec-
tures. Each RNN architecture is chosen based on an ex-
tensive literature review; however, some of the architecture
choices were taken to approach the problem of automatic
speech translation from a perspective not previously pub-
lished. The results obtained using the various architectures
were analyzed and compared using standard performance
metrics. Generally, our results don’t outperform the state of
the art; however, we identify plausible reasons behind this
performance shortcoming related to the network architec-
tures and the chosen datasets.

Based on our results and prior work, some improvements
can be made to boost the performance of models on the task.
Attention mechanism can be explored for improving the re-
sults while predicting question marks. Using audio data,
specifically pause time between words, could be one way
to approach the problem of predicting valid punctuation
that alters the intended meaning. Another area to explore
would be using intonation in speech audio audio for punc-
tuation prediction. Additionally, if the model could learn
the context of the speech, major changes in meaning could
be avoided. Other potential areas of future work include
using a more balanced dataset, and adding additional ar-
chitectures such as attention mechanisms to focus on more
sensitive punctuation such as question marks.
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Work Division
The delegation of work among team members for this project is described in Table 4.

Student Name Contributed Aspects Details

Sumedha Raman Data Preprocessing, Implementation and Analysis Preprocessed data into segments, implemented Transfer Learning,
analyzed results of models, worked on report

Mohit Srinivasan Implementation and Analysis Implemented the GRU, BLSTM-GRU architectures, literature review,
Hyperparameter tuning, worked on report

Cesar Santoyo Implementation and Analysis BLSTM/Two BLSTM and analyzed the results,
implemented randomized train, val and test sets,

hyperparameter tuning, report
Table 4. Contributions of team members.


